Parkinson’s Treatment Can Trigger Creativity: Patients Treated With Dopamine-Enhancing Drugs Are Developing Artistic Talents, Doctor Says

Jan. 14, 2013 — Parkinson’s experts across the world have been reporting a remarkable phenomenon — many patients treated with drugs to increase the activity of dopamine in the brain as a therapy for motor symptoms such as tremors and muscle rigidity are developing new creative talents, including painting, sculpting, writing, and more.


Prof. Rivka Inzelberg of Tel Aviv University’s Sackler Faculty of Medicine first noticed the trend in her own Sheba Medical Center clinic when the usual holiday presents from patients — typically chocolates or similar gifts — took a surprising turn. “Instead, patients starting bringing us art they had made themselves,” she says.

Inspired by the discovery, Prof. Inzelberg sought out evidence of this rise in creativity in current medical literature. Bringing together case studies from around the world, she examined the details of each patient to uncover a common underlying factor — all were being treated with either synthetic precursors of dopamine or dopamine receptor agonists, which increase the amount of dopamine activity in the brain by stimulating receptors. Her report will be published in the journal Behavioral Neuroscience.

Giving in to artistic impulse

Dopamine is involved in several neurological systems, explains Prof. Inzelberg. Its main purpose is to aid in the transmission of motor commands, which is why a lack of dopamine in Parkinson’s patients is associated with tremors and a difficulty in coordinating their movements.

But it’s also involved in the brain’s “reward system” — the satisfaction or happiness we experience from an accomplishment. This is the system which Prof. Inzelberg predicts is associated with increasing creativity. Dopamine and artistry have long been connected, she points out, citing the example of the Vincent Van Gogh, who suffered from psychosis. It’s possible that his creativity was the result of this psychosis, thought to be caused by a spontaneous spiking of dopamine levels in the brain.

There are seemingly no limits to the types of artistic work for which patients develop talents, observes Prof. Inzelberg. Cases include an architect who began to draw and paint human figures after treatment, and a patient who, after treatment, became a prize-winning poet though he had never been involved in the arts before.

It’s possible that these patients are expressing latent talents they never had the courage to demonstrate before, she suggests. Dopamine-inducing therapies are also connected to a loss of impulse control, and sometimes result in behaviors like excessive gambling or obsessional hobbies. An increase in artistic drive could be linked to this lowering of inhibitions, allowing patients to embrace their creativity. Some patients have even reported a connection between their artistic sensibilities and medication dose, noting that they feel they can create more freely when the dose is higher.

Therapeutic value

Prof. Inzelberg believes that such artistic expressions have promising therapeutic potential, both psychologically and physiologically. Her patients report being happier when they are busy with their art, and have noted that motor handicaps can lessen significantly. One such patient is usually wheelchair-bound or dependent on a walker, but creates intricate wooden sculptures that have been displayed in galleries. External stimuli can sometimes bypass motor issues and foster normal movement, she explains. Similar types of art therapy are already used for dementia and stroke patients to help mitigate the loss of verbal communication skills, for example.

The next step is to try to characterize those patients who become more creative through treatment through comparing them to patients who do not experience a growth in artistic output. “We want to screen patients under treatment for creativity and impulsivity to see if we can identify what is unique in those who do become more creative,” says Prof. Inzelberg. She also believes that such research could provide valuable insights into creativity in healthy populations, too.


Story Source:

The above story is reprinted from materials provided byAmerican Friends of Tel Aviv University.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

American Friends of Tel Aviv University (2013, January 14). Parkinson’s treatment can trigger creativity: Patients treated with dopamine-enhancing drugs are developing artistic talents, doctor says. ScienceDaily. Retrieved January 18, 2013, from

Dopamine Regulates the Motivation to Act, Study Shows

Jan. 10, 2013 — The widespread belief that dopamine regulates pleasure could go down in history with the latest research results on the role of this neurotransmitter. Researchers have proved that it regulates motivation, causing individuals to initiate and persevere to obtain something either positive or negative.


The neuroscience journal Neuron publishes an article by researchers at the Universitat Jaume I of Castellón that reviews the prevailing theory on dopamine and poses a major paradigm shift with applications in diseases related to lack of motivation and mental fatigue and depression, Parkinson’s, multiple sclerosis, fibromyalgia, etc. and diseases where there is excessive motivation and persistence as in the case of addictions.

“It was believed that dopamine regulated pleasure and reward and that we release it when we obtain something that satisfies us, but in fact the latest scientific evidence shows that this neurotransmitter acts before that, it actually encourages us to act. In other words, dopamine is released in order to achieve something good or to avoid something evil,” explains Mercè Correa.

Studies had shown that dopamine is released by pleasurable sensations but also by stress, pain or loss. These research results however had been skewed to only highlight the positive influence, according to Correa. The new article is a review of the paradigm based on the data from several investigations, including those conducted over the past two decades by the Castellón group in collaboration with the John Salamone of the University of Connecticut (USA), on the role of dopamine in the motivated behaviour in animals.

The level of dopamine depends on individuals, so some people are more persistent than others to achieve a goal. “Dopamine leads to maintain the level of activity to achieve what is intended. This in principle is positive, however, it will always depend on the stimuli that are sought: whether the goal is to be a good student or to abuse of drugs” says Correa. High levels of dopamine could also explain the behaviour of the so-called sensation seekers as they are more motivated to act.

Application for depression and addiction

To know the neurobiological parameters that make people be motivated by something is important to many areas such as work, education or health. Dopamine is now seen as a core neurotransmitter to address symptoms such as the lack of energy that occurs in diseases such as depression. “Depressed people do not feel like doing anything and that’s because of low dopamine levels,” explains Correa. Lack of energy and motivation is also related to other syndromes with mental fatigue such as Parkinson’s, multiple sclerosis or fibromyalgia, among others.

In the opposite case, dopamine may be involved in addictive behaviour problems, leading to an attitude of compulsive perseverance. In this sense, Correa indicates that dopamine antagonists which have been applied so far in addiction problems probably have not worked because of inadequate treatments based on a misunderstanding of the function of dopamine.

Story Source:

The above story is reprinted from materials provided byAsociación RUVID, via AlphaGalileo.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

  1. John D. Salamone, Mercè Correa. The Mysterious Motivational Functions of Mesolimbic Dopamine.Neuron, 2012; 76 (3): 470 DOI:10.1016/j.neuron.2012.10.021
Asociación RUVID (2013, January 10). Dopamine regulates the motivation to act, study shows. ScienceDaily. Retrieved January 12, 2013, from

Gene Variant Linked to Active Personality Traits Also Linked to Human Longevity

Jan. 3, 2013 — A variant of a gene associated with active personality traits in humans seems to also be involved with living a longer life, UC Irvine and other researchers have found.

A variant of a gene associated with active personality traits in humans seems to also be involved with living a longer life, UC Irvine and other researchers have found. (Credit: © Alex Koch / Fotolia)

This derivative of a dopamine-receptor gene — called the DRD4 7R allele — appears in significantly higher rates in people more than 90 years old and is linked to lifespan increases in mouse studies.

Robert Moyzis, professor of biological chemistry at UC Irvine, and Dr. Nora Volkow, a psychiatrist who conducts research at the Brookhaven National Laboratory and also directs the National Institute on Drug Abuse, led a research effort that included data from the UC Irvine-led 90+ Study in Laguna Woods, Calif. Results appear online in The Journal of Neuroscience.

The variant gene is part of the dopamine system, which facilitates the transmission of signals among neurons and plays a major role in the brain network responsible for attention and reward-driven learning. The DRD4 7R allele blunts dopamine signaling, which enhances individuals’ reactivity to their environment.

People who carry this variant gene, Moyzis said, seem to be more motivated to pursue social, intellectual and physical activities. The variant is also linked to attention-deficit/hyperactivity disorder and addictive and risky behaviors.

“While the genetic variant may not directly influence longevity,” Moyzis said, “it is associated with personality traits that have been shown to be important for living a longer, healthier life. It’s been well documented that the more you’re involved with social and physical activities, the more likely you’ll live longer. It could be as simple as that.”

Numerous studies — including a number from the 90+ Study — have confirmed that being active is important for successful aging, and it may deter the advancement of neurodegenerative diseases, such as Alzheimer’s.

Prior molecular evolutionary research led by Moyzis and Chuansheng Chen, UC Irvine professor of psychology & social behavior, indicated that this “longevity allele” was selected for during the nomadic out-of-Africa human exodus more than 30,000 years ago.

In the new study, the UC Irvine team analyzed genetic samples from 310 participants in the 90+ Study. This “oldest-old” population had a 66 percent increase in individuals carrying the variant relative to a control group of 2,902 people between the ages of 7 and 45. The presence of the variant also was strongly correlated with higher levels of physical activity.

Next, Volkow, neuroscientist Panayotis Thanos and their colleagues at the Brookhaven National Laboratory found that mice without the variant had a 7 percent to 9.7 percent decrease in lifespan compared with those possessing the gene, even when raised in an enriched environment.

While it’s evident that the variant can contribute to longevity, Moyzis said further studies must take place to identify any immediate clinical benefits from the research. “However, it is clear that individuals with this gene variant are already more likely to be responding to the well-known medical adage to get more physical activity,” he added.

First author Deborah Grady, Maria Corrada, Valentina Ciobanu, Alexandra Moyzis, Chuansheng Chen and Dr. Claudia Kawas of UC Irvine; Diana Shustarovich and Gene-Jack Wang of Brookhaven; David Grandy of Oregon Health & Science University; Marcelo Rubinstein of Argentina’s National Scientific & Technical Research Council; and Qi Dong of Beijing Normal University also contributed to the study, which was supported by the U.S. Department of Energy, the National Institute on Aging, and the National Institute on Alcohol Abuse & Alcoholism intramural program.


Story Source:

The above story is reprinted from materials provided byUniversity of California – Irvine.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

  1. D. L. Grady, P. K. Thanos, M. M. Corrada, J. C. Barnett, V. Ciobanu, D. Shustarovich, A. Napoli, A. G. Moyzis, D. Grandy, M. Rubinstein, G.-J. Wang, C. H. Kawas, C. Chen, Q. Dong, E. Wang, N. D. Volkow, R. K. Moyzis. DRD4 Genotype Predicts Longevity in Mouse and Human.Journal of Neuroscience, 2013; 33 (1): 286 DOI:10.1523/JNEUROSCI.3515-12.2013


University of California – Irvine (2013, January 3). Gene variant linked to active personality traits also linked to human longevity.ScienceDaily. Retrieved January 9, 2013, from

Increasing Dopamine in Brain’s Frontal Cortex Decreases Impulsive Tendency

ScienceDaily (July 25, 2012) — Raising levels of the neurotransmitter dopamine in the frontal cortex of the brain significantly decreased impulsivity in healthy adults, in a study conducted by researchers at the Ernest Gallo Clinic and Research Center at the University of California, San Francisco.


“Impulsivity is a risk factor for addiction to many substances, and it has been suggested that people with lower dopamine levels in the frontal cortex tend to be more impulsive,” said lead author Andrew Kayser, PhD, an investigator at Gallo and an assistant professor of neurology at UCSF. “We wanted to see if we could decrease impulsivity by raising dopamine, and it seems as if we can.”

The study was published on July 4 in the Journal of Neuroscience.

In a double-blinded, placebo-controlled study, 23 adult research participants were given either tolcapone, a medication approved by the Food and Drug Administration (FDA) that inhibits a dopamine-degrading enzyme, or a placebo. The researchers then gave the participants a task that measured impulsivity, asking them to make a hypothetical choice between receiving a smaller amount of money immediately (“smaller sooner”) or a larger amount at a later time (“larger later”). Each participant was tested twice, once with tolcapone and once with placebo.

Participants — especially those who were more impulsive at baseline — were more likely to choose the less impulsive “larger later” option after taking tolcapone than they were after taking the placebo.

Magnetic resonance imaging conducted while the participants were taking the test confirmed that regions of the frontal cortex associated with decision-making were more active in the presence of tolcapone than in the presence of placebo.

“To our knowledge, this is the first study to use tolcapone to look for an effect on impulsivity,” said Kayser.

The study was not designed to investigate the reasons that reduced dopamine is linked with impulsivity. However, explained Kayser, scientists believe that impulsivity is associated with an imbalance in dopamine between the frontal cortex, which governs executive functions such as cognitive control and self-regulation, and the striatum, which is thought to be involved in the planning and modification of more habitual behaviors.

“Most, if not all, drugs of abuse, such as cocaine and amphetamine, directly or indirectly involve the dopamine system,” said Kayser. “They tend to increase dopamine in the striatum, which in turn may reward impulsive behavior. In a very simplistic fashion, the striatum is saying ‘go,’ and the frontal cortex is saying ‘stop.’ If you take cocaine, you’re increasing the ‘go’ signal, and the ‘stop’ signal is not adequate to counteract it.”

Kayser and his research team plan a follow-up study of the effects of tolcapone on drinking behavior. “Once we determine whether drinkers can safely tolerate this medication, we will see if it has any effect on how much they drink while they’re taking it,” said Kayser.

Tolcapone is approved as a medication for Parkinson’s disease, in which a chronic deficit of dopamine inhibits movement.

Co-authors of the paper are Daicia C. Allen, BS, Ana Navarro-Cebrian, PhD, Jennifer M. Mitchell, PhD and senior author Howard L. Fields, MD, PhD, of the Gallo Center and UCSF.

The study was supported by funds from the Wheeler Center for the Neurobiology of Addiction, the U.S. Army Telemedicine and Advanced Technology Research Center, the Alcoholic Beverage Medical Research Foundation/The Foundation for Alcohol Research and the State of California.


Journal Reference:

  1. Andrew S. Kayser,    Daicia C. Allen,    Ana Navarro-Cebrian,    Jennifer M. Mitchell,    and Howard L. Fields. Dopamine, Corticostriatal Connectivity, and Intertemporal Choice. The Journal of Neuroscience, 4 July 2012, 32(27):9402-9409 DOI: 10.1523/JNEUROSCI.1180-12.2012


University of California – San Francisco (2012, July 25). Increasing dopamine in brain’s frontal cortex decreases impulsive tendency. ScienceDaily. Retrieved July 27, 2012, from­ /releases/2012/07/120725132443.htm

Dopamine: A Substance With Many Messages

ScienceDaily (July 16, 2012) — Children quickly learn to avoid negative situations and seek positive ones. But humans are not the only species capable of remembering positive and negative events; even the small brain of a fruit fly has this capacity. Dopamine-containing nerve cells connected with the mushroom body of the fly brain play a role here. Scientists from the Max Planck Institute of Neurobiology in Martinsried have identified four different types of such nerve cells. Three of the nerve cell types assume various functions in mediating negative stimuli, while the fourth enables the fly to form positive memories.

From earliest childhood we learn to avoid things that harm us and seek positive experiences instead. Aversive memory is created by experiences like pricking our finger on a rose thorn, which we remember for a long time. Conversely, the smell of fresh food is positively associated with a feeling of satiety and creates a reward memory.

Hiromu Tanimoto and his colleagues at the Max Planck Institute of Neurobiology recently localised and identified the most important types of nerve cells involved in forming positive and negative memories of a fruit fly. All four nerve cell types they discovered use dopamine to communicate with other nerve cells. The dopamine signals released by these cells are received in the mushroom body, a prominent brain structure in insect brains. “It is really surprising that similar dopamine-releasing nerve cells can play such different roles,” says Tanimoto.

The scientists investigate the functions of the individual nerve cell types in two separate studies. In the process of learning avoidance strategies, the flies were presented with an odour that was associated with a negative stimulus, a foot shock. As a result, the flies learned to avoid this odour in future.

In the next round of experiments, the scientists replaced the shock with artificial activation of defined sets of nerve cells during an odour presentation. They discovered that the transient activation of these nerve cells alone is sufficient to signal aversive stimulus in the fly brain and lead to the formation of an aversive odour memory — even when no real aversive stimulus is present.

The scientists were also able to demonstrate that the three types of nerves cells that are responsible for the memory of punishment fulfil different functions. A major difference here is the stability of the induced memories. One of the cell types is responsible for the long-lasting memory, while memories formed by other dopamine cells are short-lived. “Punishing events induce aversive memories with different stabilities by combining distinct dopamine cells in the fly brain” explains Tanimoto.

The same method was employed to demonstrate that another set of dopamine cells signals reward to form positive odour memory. When these cells were artificially activated, the flies remembered the smell and tried to get to the source of the odour even in the absence of sugar reward. The scientists proved that specific dopamine neurons also play a key role in this process.

The messenger substance dopamine is not only significant for fruit flies and other insects. Particularly, it is also needed for reward-based learning in humans. These new discoveries suggest that functional diversity of dopamine is a highly conserved mechanism in brains.


Journal References:

1. Chang Liu, Pierre-Yves Plaçais, Nobuhiro Yamagata, Barret D. Pfeiffer, Yoshinori Aso, Anja B. Friedrich, Igor Siwanowicz, Gerald M. Rubin, Thomas Preat, Hiromu Tanimoto. A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature, 2012; DOI: 10.1038/nature11304

2. Yoshinori Aso, Andrea Herb, Maite Ogueta, Igor Siwanowicz, Thomas Templier, Anja B. Friedrich, Kei Ito, Henrike Scholz, Hiromu Tanimoto. Three Dopamine Pathways Induce Aversive Odor Memories with Different Stability. PLoS Genetics, 2012; 8 (7): e1002768 DOI: 10.1371/journal.pgen.1002768


Max-Planck-Gesellschaft (2012, July 16). Dopamine: A substance with many messages. ScienceDaily. Retrieved July 19, 2012, from­ /releases/2012/07/120718131355.htm