Chimpanzees Successfully Play the Ultimatum Game: Apes’ Sense of Fairness Confirmed

Jan. 14, 2013 — Researchers at the Yerkes National Primate Research Center, Emory University, are the first to show chimpanzees possess a sense of fairness that has previously been attributed as uniquely human. Working with colleagues from Georgia State University, the researchers played the Ultimatum Game with the chimpanzees to determine how sensitive the animals are to the reward distribution between two individuals if both need to agree on the outcome.


 

The researchers say the findings, available in an early online edition of the Proceedings of the National Academy of Sciences (PNAS) available this week, suggest a long evolutionary history of the human aversion to inequity as well as a shared preference for fair outcomes by the common ancestor of humans and apes.

According to first author Darby Proctor, PhD, “We used the Ultimatum Game because it is the gold standard to determine the human sense of fairness. In the game, one individual needs to propose a reward division to another individual and then have that individual accept the proposition before both can obtain the rewards. Humans typically offer generous portions, such as 50 percent of the reward, to their partners, and that’s exactly what we recorded in our study with chimpanzees.”

Co-author Frans de Waal, PhD, adds, “Until our study, the behavioral economics community assumed the Ultimatum Game could not be played with animals or that animals would choose only the most selfish option while playing. We’ve concluded that chimpanzees not only get very close to the human sense of fairness, but the animals may actually have exactly the same preferences as our own species.” For purposes of direct comparison, the study was also conducted separately with human children.

In the study, researchers tested six adult chimpanzees (Pan troglodytes) and 20 human children (ages 2 — 7 years) on a modified Ultimatum Game. One individual chose between two differently colored tokens that, with his or her partner’s cooperation, could be exchanged for rewards (small food rewards for chimpanzees and stickers for children). One token offered equal rewards to both players, whereas the other token favored the individual making the choice at the expense of his or her partner. The chooser then needed to hand the token to the partner, who needed to exchange it with the experimenter for food. This way, both individuals needed to be in agreement.

Both the chimpanzees and the children responded like adult humans typically do. If the partner’s cooperation was required, the chimpanzees and children split the rewards equally. However, with a passive partner, who had no chance to reject the offer, chimpanzees and children chose the selfish option.

Chimpanzees, who are highly cooperative in the wild, likely need to be sensitive to reward distributions in order to reap the benefits of cooperation. Thus, this study opens the door for further explorations into the mechanisms behind this human-like behavior.

For eight decades, the Yerkes National Primate Research Center, Emory University, has been dedicated to conducting essential basic science and translational research to advance scientific understanding and to improve the health and well-being of humans and nonhuman primates. Today, the center, as one of only eight National Institutes of Health-funded national primate research centers, provides leadership, training and resources to foster scientific creativity, collaboration and discoveries. Yerkes-based research is grounded in scientific integrity, expert knowledge, respect for colleagues, an open exchange of ideas and compassionate quality animal care.

Within the fields of microbiology and immunology, neurologic diseases, neuropharmacology, behavioral, cognitive and developmental neuroscience, and psychiatric disorders, the center’s research programs are seeking ways to: develop vaccines for infectious and noninfectious diseases; treat drug addiction; interpret brain activity through imaging; increase understanding of progressive illnesses such as Alzheimer’s and Parkinson’s diseases; unlock the secrets of memory; determine how the interaction between genetics and society shape who we are; and advance knowledge about the evolutionary links between biology and behavior.


Story Source:

The above story is reprinted from materials provided byEmory University, via EurekAlert!, a service of AAAS.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


Journal Reference:

  1. Darby Proctor, Rebecca A. Williamson, Frans B. M. de Waal, and Sarah F. Brosnan. Chimpanzees play the ultimatum gamePNAS, January 14, 2013 DOI:10.1073/pnas.1220806110
Emory University (2013, January 14). Chimpanzees successfully play the Ultimatum Game: Apes’ sense of fairness confirmed.ScienceDaily. Retrieved January 18, 2013, from http://www.sciencedaily.com/releases/2013/01/130114153418.htm
Advertisements

Parkinson’s Treatment Can Trigger Creativity: Patients Treated With Dopamine-Enhancing Drugs Are Developing Artistic Talents, Doctor Says

Jan. 14, 2013 — Parkinson’s experts across the world have been reporting a remarkable phenomenon — many patients treated with drugs to increase the activity of dopamine in the brain as a therapy for motor symptoms such as tremors and muscle rigidity are developing new creative talents, including painting, sculpting, writing, and more.


 

Prof. Rivka Inzelberg of Tel Aviv University’s Sackler Faculty of Medicine first noticed the trend in her own Sheba Medical Center clinic when the usual holiday presents from patients — typically chocolates or similar gifts — took a surprising turn. “Instead, patients starting bringing us art they had made themselves,” she says.

Inspired by the discovery, Prof. Inzelberg sought out evidence of this rise in creativity in current medical literature. Bringing together case studies from around the world, she examined the details of each patient to uncover a common underlying factor — all were being treated with either synthetic precursors of dopamine or dopamine receptor agonists, which increase the amount of dopamine activity in the brain by stimulating receptors. Her report will be published in the journal Behavioral Neuroscience.

Giving in to artistic impulse

Dopamine is involved in several neurological systems, explains Prof. Inzelberg. Its main purpose is to aid in the transmission of motor commands, which is why a lack of dopamine in Parkinson’s patients is associated with tremors and a difficulty in coordinating their movements.

But it’s also involved in the brain’s “reward system” — the satisfaction or happiness we experience from an accomplishment. This is the system which Prof. Inzelberg predicts is associated with increasing creativity. Dopamine and artistry have long been connected, she points out, citing the example of the Vincent Van Gogh, who suffered from psychosis. It’s possible that his creativity was the result of this psychosis, thought to be caused by a spontaneous spiking of dopamine levels in the brain.

There are seemingly no limits to the types of artistic work for which patients develop talents, observes Prof. Inzelberg. Cases include an architect who began to draw and paint human figures after treatment, and a patient who, after treatment, became a prize-winning poet though he had never been involved in the arts before.

It’s possible that these patients are expressing latent talents they never had the courage to demonstrate before, she suggests. Dopamine-inducing therapies are also connected to a loss of impulse control, and sometimes result in behaviors like excessive gambling or obsessional hobbies. An increase in artistic drive could be linked to this lowering of inhibitions, allowing patients to embrace their creativity. Some patients have even reported a connection between their artistic sensibilities and medication dose, noting that they feel they can create more freely when the dose is higher.

Therapeutic value

Prof. Inzelberg believes that such artistic expressions have promising therapeutic potential, both psychologically and physiologically. Her patients report being happier when they are busy with their art, and have noted that motor handicaps can lessen significantly. One such patient is usually wheelchair-bound or dependent on a walker, but creates intricate wooden sculptures that have been displayed in galleries. External stimuli can sometimes bypass motor issues and foster normal movement, she explains. Similar types of art therapy are already used for dementia and stroke patients to help mitigate the loss of verbal communication skills, for example.

The next step is to try to characterize those patients who become more creative through treatment through comparing them to patients who do not experience a growth in artistic output. “We want to screen patients under treatment for creativity and impulsivity to see if we can identify what is unique in those who do become more creative,” says Prof. Inzelberg. She also believes that such research could provide valuable insights into creativity in healthy populations, too.

 

Story Source:

The above story is reprinted from materials provided byAmerican Friends of Tel Aviv University.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.


American Friends of Tel Aviv University (2013, January 14). Parkinson’s treatment can trigger creativity: Patients treated with dopamine-enhancing drugs are developing artistic talents, doctor says. ScienceDaily. Retrieved January 18, 2013, from http://www.sciencedaily.com/releases/2013/01/130114111622.htm